Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.701
1.
Clin Transl Sci ; 17(5): e13798, 2024 May.
Article En | MEDLINE | ID: mdl-38700290

Fexuprazan, a novel potassium-competitive acid blocker, is expected to be used for the prevention of nonsteroidal anti-inflammatory drugs (NSAIDs) induced ulcer. This study aimed to evaluate pharmacokinetic (PK) interactions between fexuprazan and NSAIDs in healthy subjects. A randomized, open-label, multicenter, six-sequence, one-way crossover study was conducted in healthy male subjects. Subjects randomly received one of the study drugs (fexuprazan 40 mg BID, celecoxib 200 mg BID, naproxen 500 mg BID, or meloxicam 15 mg QD) for 5 or 7 days in the first period followed by the combination of fexuprazan and one of NSAIDs for the same days and the perpetrator additionally administered for 1-2 days in the second period. Serial blood samples for PK analysis were collected until 48- or 72-h post-dose at steady state. PK parameters including maximum plasma concentration at steady state (Cmax,ss) and area under plasma concentration-time curve over dosing interval at steady state (AUCτ,ss) were compared between monotherapy and combination therapy. The PKs of NSAIDs were not significantly altered by fexuprazan. For fexuprazan, differences in PK parameters (22% in Cmax, 19% in AUCτ,ss) were observed when co-administered with naproxen, but not clinically significant. The geometric mean ratio (90% confidence interval) of combination therapy to monotherapy for Cmax,ss and AUCτ,ss was 1.22 (1.02-1.46) and 1.19 (1.00-1.43), respectively. There were no significant changes in the systemic exposure of fexuprazan by celecoxib and meloxicam. Fexuprazan and NSAIDs did not show clinically meaningful PK interactions.


Anti-Inflammatory Agents, Non-Steroidal , Cross-Over Studies , Drug Interactions , Humans , Male , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Adult , Young Adult , Healthy Volunteers , Area Under Curve , Meloxicam/pharmacokinetics , Meloxicam/administration & dosage , Naproxen/pharmacokinetics , Naproxen/administration & dosage , Celecoxib/pharmacokinetics , Celecoxib/administration & dosage , Middle Aged
2.
J Chromatogr A ; 1725: 464909, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38688052

Membrane technology has revolutionized various fields with its energy efficiency, versatility, user-friendliness, and adaptability. This study introduces a microfluidic chip, comprised of silicone rubber and polymethylmethacrylate (PMMA) sheets to explore the impacts of polymeric support morphology on electro-membrane extraction efficiency, representing a pioneering exploration in this field. In this research, three polyvinylidenefluoride (PVDF) membranes with distinct pore sizes were fabricated and their characteristics were assessed through field-emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). This investigation centers on the extraction of three widely prescribed non-steroidal anti-inflammatory drugs: aspirin (ASA), naproxen (NAP), and ibuprofen (IBU). Quantitative parameters in the extraction process including voltage, donor phase flow rate, and acceptor phase composition were optimized, considering the type of membrane as a qualitative factor. To assess the performance of the fabricated PVDF membranes, a comparative analysis with a commercially available Polypropylene (PP) membrane was conducted. Efficient enrichment factors of 30.86, 23.15, and 21.06 were attained for ASA, NAP, and IBU, respectively, from urine samples under optimal conditions using the optimum PVDF membrane. Significantly, the choice of the ideal membrane amplified the purification levels of ASA, NAP, and IBU by factors of 1.6, 7.5, and 40, respectively.


Ibuprofen , Membranes, Artificial , Polyvinyls , Polyvinyls/chemistry , Ibuprofen/isolation & purification , Ibuprofen/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Humans , Naproxen/isolation & purification , Naproxen/chemistry , Aspirin/chemistry , Aspirin/isolation & purification , Microfluidic Analytical Techniques , Limit of Detection , Fluorocarbon Polymers
3.
J Hazard Mater ; 470: 134258, 2024 May 15.
Article En | MEDLINE | ID: mdl-38608588

Photochemical active species generated from photosensitizers, e.g., dissolved organic matter (DOM), play vital roles in the transformation of micropollutants in water. Here, butanedione (BD), a redox-active moiety in DOM and widely found in nature, was employed to photo-transform naproxen (NPX) with peracetic acid (PAA) and H2O2 as contrasts. The results obtained showed that the BD exhibited more applicable on NPX degradation. It works in the lake or river water under UV and solar irradiation, and its NPX degradation efficiency was 10-30 times faster than that of PAA and H2O2. The reason for the efficient transformation of pollutants is that the BD system was proved to be a non-free radical dominated mechanism. The quantum yield of BD (Ф254 nm) was calculated to be 0.064, which indicates that photophysical process is the dominant mode of BD conversion. By adding trapping agents, direct energy transfer from 3BD* to NPX (in anoxic environment) or dissolved oxygen (in aerobic environment) was proved to play a major role (> 91 %). Additionally, the BD process reduces the toxicity of NPX and promotes microbial growth after irradiation. Overall, this study significantly deepened the understanding of the transformation between BD and micropollutants, and provided a potential BD-based process for micropollutants removal under solar irradiation.


Naproxen , Photolysis , Ultraviolet Rays , Water Pollutants, Chemical , Naproxen/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Energy Transfer , Hydrogen Peroxide/chemistry , Peracetic Acid/chemistry , Photochemical Processes
4.
BMJ Case Rep ; 17(4)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594198

A man in his 60s presented with a widespread erythematous rash and associated chills, paraesthesia and haematuria. He had recently commenced naproxen/esomeprazole. Blood tests showed hypereosinophilia (0.73×109/L) and moderate acute kidney injury. Histology revealed parakeratosis, mild spongiosis with eosinophils. He developed acute coronary syndrome with rapid atrial fibrillation. Coronary angiogram was non-obstructive. Cardiac MRI (CMR) revealed acute myocarditis secondary to Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS). Naproxen/esomeprazole was discontinued, and he was supported with oral corticosteroids. A repeat CMR 3 months later showed resolution of myocarditis. Naproxen/esomeprazole is not a common offending drug. DRESS is a rare drug-induced hypersensitivity reaction with a mortality rate of 10%. The objective of this case report is to highlight the significant but rare cardiac complications that can ensue from DRESS, which warrant prompt recognition and withdrawal of the causative drug.


Drug Hypersensitivity Syndrome , Eosinophilia , Myocarditis , Humans , Male , Drug Hypersensitivity Syndrome/diagnosis , Eosinophilia/complications , Esomeprazole/adverse effects , Myocarditis/complications , Naproxen/adverse effects , Middle Aged
5.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673856

Immune response to biomaterials, which is intimately related to their surface properties, can produce chronic inflammation and fibrosis, leading to implant failure. This study investigated the development of magnetic nanoparticles coated with silica and incorporating the anti-inflammatory drug naproxen, aimed at multifunctional biomedical applications. The synthesized nanoparticles were characterized using various techniques that confirmed the presence of magnetite and the formation of a silica-rich bioactive glass (BG) layer. In vitro studies demonstrated that the nanoparticles exhibited bioactive properties, forming an apatite surface layer when immersed in simulated body fluid, and biocompatibility with bone cells, with good viability and alkaline phosphatase activity. Naproxen, either free or encapsulated, reduced nitric oxide production, an inflammatory marker, while the BG coating alone did not show anti-inflammatory effects in this study. Overall, the magnetic nanoparticles coated with BG and naproxen showed promise for biomedical applications, especially anti-inflammatory activity in macrophages and in the bone field, due to their biocompatibility, bioactivity, and osteogenic potential.


Coated Materials, Biocompatible , Glass , Magnetite Nanoparticles , Naproxen , Naproxen/pharmacology , Naproxen/chemistry , Glass/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Magnetite Nanoparticles/chemistry , Animals , Mice , Humans , Nitric Oxide/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Silicon Dioxide/chemistry , Cell Survival/drug effects , RAW 264.7 Cells , Osteogenesis/drug effects
6.
BMJ Case Rep ; 17(4)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38670572

Pheochromocytoma is a chromaffin cell-derived adrenal medullary tumour and usually presents with paroxysms of hypertension, palpitations, sweating and headache due to excessive catecholamine release. These tumours can also secrete a variety of bioactive neuropeptides and hormones other than catecholamines, resulting in unusual clinical manifestations. We report a female in her mid-30s who presented with fever, anaemia, thrombocytosis and markedly elevated inflammatory markers. The fever profile, including cultures, was negative. Contrast-enhanced CT of abdomen showed a large solid-cystic right adrenal lesion with elevated plasma-free normetanephrine levels suggestive of pheochromocytoma. The fever persisted despite empirical antibiotics and antipyretics. Interleukin-6 (IL-6) levels were elevated (41.2 pg/mL (3-4 pg/mL)). She was initiated on naproxen (NPX) at a dose of 250 mg two times per day. The patient responded to NPX, and after stabilisation, she underwent an adrenalectomy. There was a complete resolution of fever with normalisation of IL-6 levels postoperatively.


Adrenal Gland Neoplasms , Adrenalectomy , Interleukin-6 , Pheochromocytoma , Humans , Pheochromocytoma/complications , Pheochromocytoma/surgery , Pheochromocytoma/blood , Female , Adrenal Gland Neoplasms/complications , Adrenal Gland Neoplasms/surgery , Adrenal Gland Neoplasms/diagnosis , Adrenal Gland Neoplasms/blood , Interleukin-6/blood , Adult , Naproxen/therapeutic use , Fever/etiology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Tomography, X-Ray Computed
7.
Arch Microbiol ; 206(5): 232, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38658486

Ibuprofen (IBU) and naproxen (NPX), as widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs), are largely produced and consumed globally, leading to frequent and ubiquitous detection in various aqueous environments. Previously, the microbial transformation of them has been given a little attention, especially with the isolated fungus. A yeast-like Apiotrichum sp. IB-1 has been isolated and identified, which could simultaneously transform IBU (5 mg/L) and NPX (2.5 mg/L) with maximum efficiencies of 95.77% and 88.31%, respectively. For mono-substrate, the transformation efficiency of IB-1 was comparable to that of co-removal conditions, higher than most of isolates so far. IBU was oxidized mainly through hydroxylation (m/z of 221, 253) and NPX was detoxified mainly via demethylation (m/z of 215) as shown by UPLC-MS/MS results. Based on transcriptome analysis, the addition of IBU stimulated the basic metabolism like TCA cycle. The transporters and respiration related genes were also up-regulated accompanied with higher expression of several dehydrogenase, carboxylesterase, dioxygenase and oxidoreductase encoding genes, which may be involved in the transformation of IBU. The main functional genes responsible for IBU and NPX transformation for IB-1 should be similar in view of previous studies, which needs further confirmation. This fungus would be useful for potential bioremediation of NSAIDs pollution and accelerate the discovery of functional oxidative genes and enzymes different from those of bacteria.


Anti-Inflammatory Agents, Non-Steroidal , Biotransformation , Ibuprofen , Naproxen , Ibuprofen/metabolism , Naproxen/metabolism , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Biodegradation, Environmental
8.
Mol Pharm ; 21(5): 2501-2511, 2024 May 06.
Article En | MEDLINE | ID: mdl-38574292

The molecular structures of nonsteroidal anti-inflammatory drugs (NSAIDs) vary, but most contain a carboxylic acid functional group (RCOOH). This functional group is known to be related to the mechanism of cyclooxygenase inhibition and also causes side effects, such as gastrointestinal bleeding. This study proposes a new role for RCOOH in NSAIDs: facilitating the interaction at the binding site II of serum albumins. We used bovine serum albumin (BSA) as a model to investigate the interactions with ligands at site II. Using dansyl-proline (DP) as a fluorescent site II marker, we demonstrated that only negatively charged NSAIDs such as ibuprofen (IBP), naproxen (NPX), diflunisal (DFS), and ketoprofen (KTP) can efficiently displace DP from the albumin binding site. We confirmed the importance of RCOO by neutralizing IBP and NPX through esterification, which reduced the displacement of DP. The competition was also monitored by stopped-flow experiments. While IBP and NPX displaced DP in less than 1 s, the ester derivatives were ineffective. We also observed a higher affinity of negatively charged NSAIDs using DFS as a probe and ultrafiltration experiments. Molecular docking simulations showed an essential salt bridge between the positively charged residues Arg409 and Lys413 with RCOO-, consistent with the experimental findings. We performed a ligand dissociation pathway and corresponding energy analysis by applying molecular dynamics. The dissociation of NPX showed a higher free energy barrier than its ester. Apart from BSA, we conducted some experimental studies with human serum albumin, and similar results were obtained, suggesting a general effect for other mammalian serum albumins. Our findings support that the RCOOH moiety affects not only the mechanism of action and side effects but also the pharmacokinetics of NSAIDs.


Anti-Inflammatory Agents, Non-Steroidal , Carboxylic Acids , Ibuprofen , Molecular Docking Simulation , Naproxen , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Binding Sites , Animals , Carboxylic Acids/chemistry , Cattle , Ibuprofen/chemistry , Naproxen/chemistry , Protein Binding , Ketoprofen/chemistry , Diflunisal/chemistry , Humans , Ligands
9.
Sci Rep ; 14(1): 9944, 2024 04 30.
Article En | MEDLINE | ID: mdl-38688946

Here, a comparative study was designed to survey the treatment efficiency of pharmaceutical wastewater containing Naproxen by Membrane bioreactor (MBR) and MBR with fixed-bed packing media (FBMBR). To this end, the performance of MBR and FBMBR in different aeration conditions including average DO (1.9-3.8 mg/L), different organic loading (OLR) (0.86, 1.14 and 1.92 kg COD per cubic meter per day), and Naproxen removal efficiency. The BOD5 removal efficiency, effluent quality and membrane fouling were monitored within 140 days. The results obtained from the present study indicated that COD removal efficiency for FBMBR (96.46%) was higher than that for MBR (95.33%). In addition, a high COD removal efficiency was experienced in both MBR and FBMBR in operational conditions 3 and 4, even where OLR increased from 1.14 to 1.92 kgCOD/m3 d and DO decreased from 4 to < 1 mg/L. Furthermore, the higher Naproxen removal efficiency was observed in FBMBR (94.17%) compared to that for MBR (92.76%). Therefore, FBMBR is a feasible and promising method for efficient treatment of pharmaceuptical wastewater with high concentrations of emerging contaminant, especially, the Naproxen.


Bioreactors , Membranes, Artificial , Naproxen , Wastewater , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis
10.
Sci Total Environ ; 928: 172267, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38583628

Soils represent crucial sinks for pharmaceuticals and microplastics, making them hotspots for pharmaceuticals and plastic pollution. Despite extensive research on the toxicity of pharmaceuticals and microplastics individually, there is limited understanding of their combined effects on soil biota. This study focused on the earthworm Eisenia fetida as test organism to evaluate the biotoxicity and bioaccumulation of the typical pharmaceutical naproxen and microplastics in earthworms. Results demonstrated that high concentrations of naproxen (100 mg kg-1) significantly increased the malondialdehyde (MDA) content, inducing lipid peroxidation. Even though the low exposure of naproxen exhibits no significant influence to Eisenia fetida, the lipid peroxidation caused by higher concentration than environmental relevant concentrations necessitate attention due to temporal and spatial concentration variability found in the soil environment. Meanwhile, microplastics caused oxidative damage to antioxidant enzymes by reducing the superoxide dismutase (SOD) activity and MDA content in earthworms. Metabolome analysis revealed increased lipid metabolism in naproxen-treated group and reduced lipid metabolism in the microplastic-treated group. The co-exposure of naproxen and microplastics exhibited a similar changing trend to the microplastics-treated group, emphasizing the significant influence of microplastics. The detection of numerous including lipids like 17-Hydroxyandrostane-3-glucuronide, lubiprostone, morroniside, and phosphorylcholine, serves to identify potential biomarkers for naproxen and microplastics exposure. Additionally, microplastics increased the concentration of naproxen in earthworms at sub-organ and subcellular level. This study contributes valuable insights into the biotoxicity and distribution of naproxen and microplastics in earthworms, enhancing our understanding of their combined ecological risk to soil biota.


Microplastics , Naproxen , Oligochaeta , Soil Pollutants , Oligochaeta/drug effects , Naproxen/toxicity , Animals , Soil Pollutants/toxicity , Microplastics/toxicity , Ecotoxicology , Soil/chemistry , Environmental Monitoring
11.
Mol Carcinog ; 63(6): 1188-1204, 2024 Jun.
Article En | MEDLINE | ID: mdl-38506376

Recent preclinical studies have shown that the intake of nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin and naproxen could be an effective intervention strategy against TMPRSS2-ERG fusion-driven prostate tumorigenesis. Herein, as a follow-up mechanistic study, employing TMPRSS2-ERG (fusion) positive tumors and plasma from TMPRSS2-ERG. Ptenflox/flox mice, we profiled the stage specific proteomic changes (focused on inflammatory circulating and prostate tissue/tumor-specific cytokines, chemokines, and growth factors/growth signaling-associated molecules) that contribute to prostate cancer (PCa) growth and progression in the TMPRSS2-ERG fusion-driven mouse model of tumorigenesis. In addition, the association of the protective effects of NSAIDs (aspirin 1400 ppm and naproxen 400 ppm) with the modulation of these specific molecular pathways was determined. A sandwich Elisa based membrane array-proteome profiler identifying 111 distinct signaling molecules was employed. Overall, the plasma and prostate tissue sample analyses identified 54 significant and differentially expressed cytokines, chemokines, and growth factors/growth signaling-associated molecules between PCa afflicted mice (TMPRSS2-ERG. Ptenflox/flox, age-matched noncancerous controls, NSAIDs-supplemented and no-drug controls). Bioinformatic analysis of the array outcomes indicated that the protective effect of NSAIDs was associated with reduced expression of (a) tumor promoting inflammatory molecules (M-CSF, IL-33, CCL22, CCL12, CX3CL1, CHI3L1, and CD93), (b) growth factors- growth signaling-associated molecules (Chemerin, FGF acidic, Flt-3 ligand, IGFBP-5, and PEDF), and (c) tumor microenvironment/stromal remodeling proteins MMP2 and MMP9. Overall, our findings corroborate the pathological findings that protective effects of NSAIDs in TMPSS2-ERG fusion-driven prostate tumorigenesis are associated with antiproliferative and anti-inflammatory effects and possible modulation of the immune cell enriched microenvironment.


Anti-Inflammatory Agents, Non-Steroidal , Aspirin , Naproxen , Prostatic Neoplasms , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacology , Mice , Naproxen/pharmacology , Proteomics/methods , Inflammation/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Prostate/pathology , Prostate/metabolism , Prostate/drug effects , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/metabolism , Proteome/metabolism , Humans , Cytokines/metabolism , Cytokines/blood
12.
Anal Methods ; 16(13): 1870-1879, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38465391

This paper presents a study on the application of magnetic biochars derived from three distinct biomass sources: almond (AMBC), walnut (WMBC), and peanut (PMBC) shells for magnetic solid-phase extraction (MSPE) of naproxen, a non-steroidal anti-inflammatory drug, from human saliva prior to LC-MS analysis. The three magnetic biochars were synthesized and characterized through IR, XRD, SEM, and EDX analyses. This work explored the factors influencing extraction efficiency using these three bioadsorbents through experimental design. The results obtained revealed that magnetic biochar derived from almond shells demonstrated outstanding performance in terms of naproxen extraction, achieving an impressive yield of 100.2%. This remarkable efficiency was achieved by optimizing parameters, including a 12-minute extraction time, a 3.5 mL elution volume, a 10 mg adsorbent mass, and a 4-minute elution time. Consequently, this study established almond shell as a low-cost, environmentally friendly, and efficient magnetic biochar for extracting naproxen from human saliva. This superior performance was made possible due to the abundant lignocellulosic potential inherent in almond shell structures, surpassing that of the other two biochars. The combination of magnetic extraction with LC-MS demonstrates good linearity, with an R2 value equal to 0.9987. The limits of detection (LOD) and quantification (LOQ) are 0.013 and 0.047 µg L-1, respectively.


Charcoal , Naproxen , Saliva , Humans , Naproxen/chemistry , Biomass , Solid Phase Extraction/methods , Magnetic Phenomena
13.
J Hazard Mater ; 470: 134139, 2024 May 15.
Article En | MEDLINE | ID: mdl-38555674

In this study, the porous carbon material (FeN-BC) with ultra-high catalytic activity was obtained from waste biomass through Fe-N co-doping. The prominent degradation rate (> 96.8%) of naproxen (NAP) was achieved over a wide pH range (pH 3.0-9.0) in FeN-BC/PAA system. Unlike previously reported iron-based peracetic acid (PAA) systems with •OH or RO• as the dominated reactive species, the degradation of contaminants was attributed to singlet oxygen (1O2) produced by organic radicals (RO•) decomposition, which was proved to be thermodynamically feasible and favorable by theoretical calculations. Combining the theoretical calculations, characteristic and experimental analysis, the synergistic effects of Fe and N were proposed and summarized as follows: i) promoted the formation of extensive defects and Fe0 species that facilitated electron transfer between FeN-BC and PAA and continuous Fe(II) generation; ii) modified the specific surface area (SSA) and the isoelectric point of FeN-BC in favor of PAA adsorption on the catalyst surface. This study provides a strategy for waste biomass reuse to construct a heterogeneous catalyst/PAA system for efficient water purification and reveals the synergistic effects of typical metal-heteroatom for PAA activation.


Biomass , Charcoal , Iron , Peracetic Acid , Water Pollutants, Chemical , Water Purification , Peracetic Acid/chemistry , Charcoal/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Nitrogen/chemistry , Naproxen/chemistry , Catalysis , Decontamination/methods , Adsorption
14.
Int J Biol Macromol ; 263(Pt 1): 130266, 2024 Apr.
Article En | MEDLINE | ID: mdl-38368982

Recently, a significantly greater clinical benefit has been reported with a combination of glucosamine sulfate and nonsteroidal anti-inflammatory drugs (NSAIDs) compared to either treatment alone for the growing osteoarthritis (OA) disease. So, this study introduces hydrogels using O-carboxymethyl chitosan (O-CMC, structurally akin glucosamine glycan), and Gelatin type A (GA) in a 1:2 ratio with ß-glycerophosphate (ßGPh) at varying percentages (5 %, 12.5 %, and 15 %). We show that hydrogel properties, adaptable for drug delivery or tissue engineering, can be fine-tuned based on OCMC:ßGPh ratio. CMC/GA/ßGPh-12.5 exhibited a swelling rate of 189 %, compressive stress of 164 kPa, and compressive modulus of 3.4 kPa. The self-healing hydrogel also exhibited excellent injectability through a 21-gauge needle, requiring only 5 N of force. Ibuprofen and Naproxen release from CMC/GA/ßGPh-12.5 and CMC/GA/ßGPh-15 of designed dimensions (bi-layer structures of different diameter and height) were measured, and drug release kinetics were estimated using mathematical equations (MATLAB and polyfit program). CMC/GA/ßGPh-12.5 demonstrated significant antibacterial effects against E. coli and S. aureus, a high cell survival rate of 89 % against L929 fibroblasts, and strong cell adhesion, all indicating biocompatibility. These findings underscore potential of these hydrogels as promising candidates for treating inflammatory diseases such as osteoarthritis.


Chitosan , Chitosan/analogs & derivatives , Osteoarthritis , Humans , Ibuprofen/pharmacology , Naproxen , Gelatin/chemistry , Hydrogels/chemistry , Escherichia coli , Staphylococcus aureus , Chitosan/chemistry , Anti-Bacterial Agents/chemistry
15.
Int J Biol Macromol ; 262(Pt 1): 130013, 2024 Mar.
Article En | MEDLINE | ID: mdl-38340930

A natural polysaccharide-based vehicle is facilely prepared for enantioselective loading of S-naproxen (S-NPX) and its programmed release. Cyclodextrin metal-organic frameworks (CD-MOF) are synthesized through the coordination of K+ with γ-cyclodextrin (γ-CD). Compared with R-NPX, the CD-MOF preferably combines with S-NPX, which can be confirmed by the thermodynamic calculations. The S-NPX loaded CD-MOF (CD-MOF-S-NPX) is grafted with disulfide bond (-S-S-) to improve its hydrophobicity, and the loaded S-NPX is further encapsulated in the chiral cavity of γ-CD by carboxymethyl potato starch (CPS) hydrogels. The intermolecular hydrogen bonding of the CPS hydrogels is prone to be destroyed in mildly basic media (∼pH 8.0), resulting in the swelling of the hydrogels; the -S-S- linkage in the vehicle can be cleaved in the presence of glutathione (GSH), leading to the collapse of the CD-MOF. Therefore, the programmed release of S-NPX can be achieved. Also in this work, the release kinetics is investigated, and the results indicate that the release of S-NPX is controlled by the Higuchi model.


Cyclodextrins , Metal-Organic Frameworks , Solanum tuberosum , Cyclodextrins/chemistry , Naproxen/chemistry , Metal-Organic Frameworks/chemistry , Hydrogels , Stereoisomerism
16.
Am J Case Rep ; 25: e942242, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38311849

BACKGROUND Reye syndrome is a rare, yet potentially life-threatening disease characterized by acute encephalopathy and hepatic failure. This report presents the case of an 8-year-old girl with Reye syndrome and seizures after the use of naproxen. CASE REPORT An 8-year-old girl experienced a 3-day episode of fever and abdominal pain. After receiving naproxen (375 mg twice daily) starting from day -3, she exhibited hypotension, tonic seizure, and loss of consciousness (day 1). Physical examination and laboratory test results revealed acute kidney injury, metabolic acidosis, and elevated levels of lactate dehydrogenase (LDH), liver enzymes, and ferritin. On day 2, the maximum values of aspartate aminotransferase, alanine aminotransferase, LDH, creatinine, and ferritin were 955 U/L, 132 U/L, 8040 U/L, 2 mg/dL, and >40000 ug/L, respectively. She was given supportive care and recovered after 11 days (day 12), with normalization of kidney function and metabolic abnormalities. To identify possible genetic polymorphisms associated with the patient's symptoms, genotypes were tested using a drug metabolizing enzymes and transporters (DMET) gene chip. Among genes involved in the metabolism of naproxen, UGT1A6 (*1/*2) and UGT2B7 (*1/*2) resulted in possibly decreased function. Other results which may have had clinical significance included homozygote results for NAT2*6/*6 (rs1799930). CONCLUSIONS A rare case of Reye syndrome after administration of naproxen was presented in this case. A DMET gene chip was used to screen for possible genetic polymorphisms associated with Reye syndrome, but the result was inconclusive.


Arylamine N-Acetyltransferase , Reye Syndrome , Female , Humans , Child , Reye Syndrome/chemically induced , Reye Syndrome/genetics , Naproxen/adverse effects , Pharmacogenomic Testing , Fever , Seizures , Ferritins
17.
J Pharm Pharm Sci ; 27: 12384, 2024.
Article En | MEDLINE | ID: mdl-38384362

Non-specific low back pain (LBP) represents a challenging and prevalent condition that is one of the most common symptoms leading to primary care physician visits. While established guidelines recommend prioritizing non-pharmacological approaches as the primary course of action, pharmacological treatments are advised when non-pharmacological approaches are ineffective or based on patient preference. These guidelines recommend non-steroidal anti-inflammatory drugs (NSAIDs) or skeletal muscle relaxers (SMRs) as the first-line pharmacological options for acute or subacute LBP, while NSAIDs are the exclusive first-line pharmacological option for chronic LBP. Although SMRs are generally effective for acute LBP, the available evidence does not support the view that they improve functional recovery, and their comparative efficacy to NSAIDs and other analgesics remains unknown, while studies have shown them to introduce adverse events without significantly reducing LBP. Moreover, opioids continue to be widely prescribed for LBP, despite limited evidence for effectiveness and known risks of addiction and overdose. Broader use of non-opioid pharmacotherapy, including the appropriate use of OTC options, is critical to addressing the opioid crisis. The balance of evidence indicates that NSAIDs have a favorable benefit-risk profile when compared to other available pharmacological treatment options for non-specific LBP, a condition that is primarily acute in nature and well-suited for self-treatment with OTC analgesics. While clinical guidelines do not differentiate between NSAIDs, evidence indicates that OTC naproxen sodium effectively relieves pain across multiple types of pain models, and furthermore, the 14-h half-life of naproxen sodium allows sustained, all day pain relief with reduced patient pill burden as compared to shorter acting options. Choosing the most appropriate approach for managing LBP, including non-pharmacological options, should be based on the patient's condition, severity of pain, potential risks, and individual patient preference and needs.


Low Back Pain , Naproxen , Humans , Naproxen/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Analgesics , Analgesics, Opioid , Low Back Pain/drug therapy , Low Back Pain/chemically induced
18.
Am J Obstet Gynecol ; 230(5): 553.e1-553.e14, 2024 May.
Article En | MEDLINE | ID: mdl-38295969

BACKGROUND: The mechanisms responsible for menstrual pain are poorly understood. However, dynamic, noninvasive pelvic imaging of menstrual pain sufferers could aid in identifying therapeutic targets and testing novel treatments. OBJECTIVE: To study the mechanisms responsible for menstrual pain, we analyzed ultrasonographic and complementary functional magnetic resonance imaging parameters in dysmenorrhea sufferers and pain-free controls under multiple conditions. STUDY DESIGN: We performed functional magnetic resonance imaging on participants with and those without dysmenorrhea during menses and outside menses. To clarify whether regional changes in oxygen availability and perfusion occur, functional magnetic resonance imaging R2∗ measurements of the endometrium and myometrium were obtained. R2∗ measurements are calculated nuclear magnetic resonance relaxation rates sensitive to the paramagnetic properties of oxygenated and deoxygenated hemoglobin. We also compared parameters before and after an analgesic dose of naproxen sodium. In addition, we performed similar measurements with Doppler ultrasonography to identify if changes in uterine arterial velocity occurred during menstrual cramping in real time. Mixed model statistics were performed to account for within-subject effects across conditions. Corrections for multiple comparisons were made with a false discovery rate adjustment. RESULTS: During menstruation, a notable increase in R2∗ values, indicative of tissue ischemia, was observed in both the myometrium (beta ± standard error of the mean, 15.74±2.29 s-1; P=.001; q=.002) and the endometrium (26.37±9.33 s-1; P=.005; q=.008) of participants who experienced dysmenorrhea. A similar increase was noted in the myometrium (28.89±2.85 s-1; P=.001; q=.002) and endometrium (75.50±2.57 s-1; P=.001; q=.003) of pain-free controls. Post hoc analyses revealed that the R2∗ values during menstruation were significantly higher among the pain-free controls (myometrium, P=.008; endometrium, P=.043). Although naproxen sodium increased the endometrial R2∗ values among participants with dysmenorrhea (48.29±15.78 s-1; P=.005; q=.008), it decreased myometrial R2∗ values among pain-free controls. The Doppler findings were consistent with the functional magnetic resonance imaging (-8.62±3.25 s-1; P=.008; q=.011). The pulsatility index (-0.42±0.14; P=.004; q=.004) and resistance index (-0.042±0.012; P=.001; q=.001) decreased during menses when compared with the measurements outside of menses, and the effects were significantly reversed by naproxen sodium. Naproxen sodium had the opposite effect in pain-free controls. There were no significant real-time changes in the pulsatility index, resistance index, peak systolic velocity, or minimum diastolic velocity during episodes of symptomatic menstrual cramping. CONCLUSION: Functional magnetic resonance imaging and Doppler metrics suggest that participants with dysmenorrhea have better perfusion and oxygen availability than pain-free controls. Naproxen sodium's therapeutic mechanism is associated with relative reductions in uterine perfusion and oxygen availability. An opposite pharmacologic effect was observed in pain-free controls. During menstrual cramping, there is insufficient evidence of episodic impaired uterine perfusion. Thus, prostaglandins may have protective vasoconstrictive effects in pain-free controls and opposite effects in participants with dysmenorrhea.


Dysmenorrhea , Endometrium , Magnetic Resonance Imaging , Naproxen , Oxygen , Humans , Female , Dysmenorrhea/diagnostic imaging , Dysmenorrhea/drug therapy , Dysmenorrhea/physiopathology , Adult , Naproxen/therapeutic use , Young Adult , Endometrium/diagnostic imaging , Endometrium/metabolism , Endometrium/blood supply , Oxygen/metabolism , Oxygen/blood , Myometrium/diagnostic imaging , Myometrium/blood supply , Myometrium/metabolism , Ultrasonography, Doppler , Case-Control Studies , Menstruation , Uterine Artery/diagnostic imaging , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
19.
J Int Soc Sports Nutr ; 21(1): 2302046, 2024 Dec.
Article En | MEDLINE | ID: mdl-38198469

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen, flurbiprofen, naproxen sodium, and indomethacin are commonly employed for their pain-relieving and inflammation-reducing qualities. NSAIDs work by blocking COX-1 and/or COX-2, enzymes which play roles in inflammation, fever, and pain. The main difference among NSAIDs lies in their affinity to these enzymes, which in turn, influences prostaglandin secretion, and skeletal muscle growth and regeneration. The current study investigated the effects of NSAIDs on human skeletal muscle cells, focusing on myoblast proliferation, differentiation, and muscle protein synthesis signaling. METHODS: Using human primary muscle cells, we examined the dose-response impact of flurbiprofen (25-200 µM), indomethacin (25-200 µM), ibuprofen (25-200 µM), and naproxen sodium (25-200 µM), on myoblast viability, myotube area, fusion, and prostaglandin production. RESULTS: We found that supraphysiological concentrations of indomethacin inhibited myoblast proliferation (-74 ± 2% with 200 µM; -53 ± 3% with 100 µM; both p < 0.05) compared to control cells and impaired protein synthesis signaling pathways in myotubes, but only attenuated myotube fusion at the highest concentrations (-18 ± 2% with 200 µM, p < 0.05) compared to control myotubes. On the other hand, ibuprofen had no such effects. Naproxen sodium only increased cell proliferation at low concentrations (+36 ± 2% with 25 µM, p < 0.05), and flurbiprofen exhibited divergent impacts depending on the concentration whereby low concentrations improved cell proliferation (+17 ± 1% with 25 µM, p < 0.05) but high concentrations inhibited cell proliferation (-32 ± 1% with 200 µM, p < 0.05). CONCLUSION: Our findings suggest that indomethacin, at high concentrations, may detrimentally affect myoblast proliferation and differentiation via an AKT-dependent mechanism, and thus provide new understanding of NSAIDs' effects on skeletal muscle cell development.


Flurbiprofen , Naproxen , Humans , Naproxen/pharmacology , Ibuprofen/pharmacology , Flurbiprofen/pharmacology , Indomethacin/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Muscle Fibers, Skeletal , Inflammation , Pain , Prostaglandins
20.
Mol Pharm ; 21(2): 801-812, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38217878

Cancer is a significant global public health concern, ranking as the leading cause of mortality worldwide. This study thoroughly explores boron-doped carbon dots (B-CDs) through a simple/rapid microwave-assisted approach and their versatile applications in cancer therapy. The result was highly uniform particles with an average diameter of approximately 4 nm. B-CDs exhibited notable properties, including strong fluorescence with a quantum yield of 33%. Colloid stability tests revealed their robustness within a pH range of 6-12, NaCl concentrations up to 0.5 M, and temperatures ranging from 30 to 60 °C. The study also delved into the kinetics of naproxen release from B-CDs as a drug delivery system. The loading efficacy of naproxen exceeded 55.56%. Under varying pH conditions, the release of naproxen from B-CDs conformed to the Peppas-Sahlin model, demonstrating the potential of Naproxen-loaded CDs for cancer drug delivery. In vitro cytotoxicity assessments, conducted using the CCK-8 Assay and flow cytometry, consistently indicated low toxicity with average cell viability exceeding 80%. An in vivo toxicity test on female mice administered 20 mg/kg of B-CDs for 31 days revealed reversible histological changes in the liver and kidneys, while the pancreas remained unaffected. Importantly, B-CDs did not impact the mice's physical behavior, body weight, or survival. In vivo experiments targeting benzo(a)pyrene-induced fibrosarcoma demonstrated the efficacy of B-CDs as naproxen carriers in the treatment of cancer. This in vivo study provides a thorough comprehension of B-CDs synthesis and toxicity and their potential applications in cancer therapy and drug delivery systems.


Antineoplastic Agents , Quantum Dots , Female , Animals , Mice , Quantum Dots/chemistry , Boron , Naproxen/therapeutic use , Carbon/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
...